Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731823

ABSTRACT

This study presents the initial attempt at introducing a magnetic molecularly imprinted polymer (MIP) designed specifically for lamotrigine with the purpose of functioning as a drug carrier. First, the composition of the magnetic polymer underwent optimization based on bulk polymer adsorption studies and theoretical analyses. The magnetic MIP was synthesized from itaconic acid and ethylene glycol dimethacrylate exhibiting a drug loading capacity of 3.4 ± 0.9 µg g-1. Structural characterization was performed using powder X-ray diffraction analysis, vibrating sample magnetometry, and Fourier transform infrared spectroscopy. The resulting MIP demonstrated controlled drug released characteristics without a burst effect in the phospahe buffer saline at pH 5 and 8. These findings hold promise for the potential nasal administration of lamotrigine in future applications.


Subject(s)
Drug Carriers , Lamotrigine , Molecularly Imprinted Polymers , Lamotrigine/chemistry , Drug Carriers/chemistry , Molecularly Imprinted Polymers/chemistry , Molecularly Imprinted Polymers/chemical synthesis , Molecular Imprinting/methods , Spectroscopy, Fourier Transform Infrared , Drug Liberation , X-Ray Diffraction , Adsorption , Hydrogen-Ion Concentration
2.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338649

ABSTRACT

The highly aggressive and invasive glioblastoma (GBM) tumour is the most malignant lesion among adult-type diffuse gliomas, representing the most common primary brain tumour in the neuro-oncology practice of adults. With a poor overall prognosis and strong resistance to treatment, this nervous system tumour requires new innovative treatment. GBM is a polymorphic tumour consisting of an array of stromal cells and various malignant cells contributing to tumour initiation, progression, and treatment response. Cannabinoids possess anti-cancer potencies against glioma cell lines and in animal models. To improve existing treatment, cannabinoids as functionalised ligands on nanocarriers were investigated as potential anti-cancer agents. The GBM tumour microenvironment is a multifaceted system consisting of resident or recruited immune cells, extracellular matrix components, tissue-resident cells, and soluble factors. The immune microenvironment accounts for a substantial volume of GBM tumours. The barriers to the treatment of glioblastoma with cannabinoids, such as crossing the blood-brain barrier and psychoactive and off-target side effects, can be alleviated with the use of nanocarrier drug delivery systems and functionalised ligands for improved specificity and targeting of pharmacological receptors and anti-cancer signalling pathways. This review has shown the presence of endocannabinoid receptors in the tumour microenvironment, which can be used as a potential unique target for specific drug delivery. Existing cannabinoid agents, studied previously, show anti-cancer potencies via signalling pathways associated with the hallmarks of cancer. The results of the review can be used to provide guidance in the design of future drug therapy for glioblastoma tumours.


Subject(s)
Brain Neoplasms , Cannabinoids , Glioblastoma , Glioma , Animals , Glioblastoma/metabolism , Endocannabinoids , Brain Neoplasms/metabolism , Tumor Microenvironment , Cannabinoids/pharmacology , Cannabinoids/therapeutic use
3.
Pharmaceutics ; 15(7)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37514041

ABSTRACT

Ophthalmic drops for ocular delivery exhibit inadequate residence time, which often requires multiple daily dosing that may result in patient non-adherence. In this study, the development of a once-daily-dosed chitosan-coated metronidazole (MTZ)-loaded solid lipid nanoparticles (SLNs) for ocular delivery was undertaken. Melt emulsification and ultrasonication were used to manufacture MTZ-loaded SLN, which were subsequently coated with chitosan (CS) by mechanical stirring using a 0.1% w/v solution. Gelucire® 48/16 and Transcutol® HP were used as the solid lipid and synthetic solvent, respectively, with Tween® 20 included as a stabilizing agent. The critical quality attributes (CQA) of the optimized CS-coated SLN that was monitored included particle size, polydispersity index, Zeta potential, % entrapment efficiency, % MTZ loading, pH, and osmolarity. The optimized coated nanocarriers were evaluated using laser Doppler anemometry (LDA) and were determined to be stable, with particle sizes in the nanometre range. In vitro mucoadhesion, MTZ release and short-term stability, in addition to the determination of the shape of the optimized CS-coated SLN, were undertaken. The mucoadhesive properties of the optimized CS-coated MTZ-loaded SLN demonstrated increased ocular availability, which may allow dose reduction or longer intervals between doses by improving precorneal retention and ocular availability. Overall, our findings suggest that CS-coated MTZ-loaded SLNs have the potential for clinical application, to enhance ocular delivery through the release of MTZ.

4.
Int J Mol Sci ; 23(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36362014

ABSTRACT

Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.


Subject(s)
Cannabinoids , Endocannabinoids , Animals , Endocannabinoids/metabolism , Molecular Docking Simulation , Ligands , Cannabinoids/pharmacology , Signal Transduction , Mammals/metabolism
5.
Pharmaceutics ; 12(9)2020 Aug 23.
Article in English | MEDLINE | ID: mdl-32842501

ABSTRACT

The formation, manufacture and characterization of low energy water-in-oil (w/o) nanoemulsions prepared using cold pressed flaxseed oil containing efavirenz was investigated. Pseudo-ternary phase diagrams were constructed to identify the nanoemulsion region(s). Other potential lipid-based drug delivery phases containing flaxseed oil with 1:1 m/m surfactant mixture of Tween® 80, Span® 20 and different amounts of ethanol were tested to characterize the impact of surfactant mixture on emulsion formation. Flaxseed oil was used as the oil phase as efavirenz exhibited high solubility in the vehicle when compared to other vegetable oils tested. Optimization of surfactant mixtures was undertaken using design of experiments, specifically a D-optimal design with the flaxseed oil content set at 10% m/m. Two solutions from the desired optimization function were produced based on desirability and five nanoemulsion formulations were produced and characterized in terms of in vitro release of efavirenz, physical and chemical stability. Metastable nanoemulsions containing 10% m/m flaxseed oil were successfully manufactured and significant isotropic gel (semisolid) and o/w emulsions were observed during phase behavior studies. Droplet sizes ranged between 156 and 225 nm, zeta potential between -24 and -41 mV and all formulations were found to be monodisperse with polydispersity indices ≤ 0.487.

6.
Drug Dev Ind Pharm ; 46(9): 1402-1415, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32795107

ABSTRACT

The aim of this research was to develop lamotrigine containing thermosetting hydrogel for intranasal administration to manage and treat generalized epilepsy. Thermosetting hydrogels were prepared using different ratios of poloxamer 407 (L127), poloxamer 188 (L68) and Carbopol® 974 P NF (C974) using the cold production process. The in situ thermosetting hydrogel was optimized using Box Behken design. Co-solvency approach was used to increase the solubility of lamotrigine by dissolving it in propylene glycol and polyethylene glycol 400 (0.2: 0.8) and the resultant solution was incorporated in the hydrogel to manufacture an LTG hydrogel. The presence of a higher amount of L127 resulted in higher viscosity at 22 °C and 34 °C and decreased the overall release of LTG. An increase in the amount of C974 resulted in a decrease in the pH of the hydrogel. The results show that formulations F10, F12, F13, F14, F15, F16 and F17 exhibited acceptable thermosetting behavior, pH and released adequate Lamotrigine above the minimum effective concentration to treat generalized epilepsy. The optimized formulation exhibited acceptable thermosetting behavior, pH and lamotrigine release but formed a stiff gel at 22 °C. The average LTG content of the optimized hydrogel was 5.00 ± 0.0225 mg/ml with % recovery of 99.17%. The amount of LTG released at 12 h from the optimized hydrogel was 3.21 ± 0.0155 mg and will be therapeutically effective in the brain after absorption via the olfactory region in the nasal cavity.


Subject(s)
Anticonvulsants , Hydrogels , Lamotrigine/chemistry , Neural Networks, Computer , Poloxamer
7.
Pharmaceutics ; 12(8)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751409

ABSTRACT

Cardiovascular diseases such as hypertension and cardiac failure in South African children and adolescents are effectively managed long term, using a combination treatment of captopril and hydrochlorothiazide. The majority of commercially available pharmaceutical products are designed for adult patients and require extemporaneous manipulation, prior to administration to paediatric patients. There is a need to develop an age appropriate microparticulate dosing technology that is easy to swallow, dose and alter doses whilst overcoming the pharmacokinetic challenges of short half-life and biphasic pharmacokinetic disposition exhibited by hydrochlorothiazide and captopril. An emulsion solvent evaporation approach using different combinations of polymers was used to manufacture captopril and hydrochlorothiazide microparticles. Design of experiments was used to develop and analyse experimental data, and identifyoptimum formulation and process conditions for the preparation of the microparticles. Characterisation studies to establish encapsulation efficiency, in vitro release, shape, size and morphology of the microparticles were undertaken. The microparticles produced were in the micrometre size range, with an encapsulation efficiency >75% for both hydrochlorothiazide and captopril. The microparticulate technology is able to offer potential resolution to the half-life mediated dosing frequency of captopril as sustained release of the molecule was observed over a 12-h period. The release of hydrochlorothiazide of >80% suggests an improvement in solubility limited dissolution.

8.
Saudi Pharm J ; 28(3): 308-315, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32194332

ABSTRACT

The aim of these studies was to determine the miscibility of different API with lipid excipients to predict drug loading and encapsulation properties for the production of solid lipid nanoparticles and nanostructured lipid carriers. Five API exhibiting different physicochemical characteristics, viz., clarithromycin, efavirenz, minocycline hydrochloride, mometasone furoate, and didanosine were used and six solid lipids in addition to four liquid lipids were investigated. Determination of solid and liquid lipids with the best solubilization potential for each API were performed using a traditional shake-flask method and/or a modification thereof. Hansen solubility parameters of the API and different solid and liquid lipids were estimated from their chemical structure using Hiroshi Yamamoto's molecular breaking method of Hansen Solubility Parameters in Practice software. Experimental results were in close agreement with solubility parameter predictions for systems with ΔδT < 4.0 MPa1/2. A combination of Hansen solubility parameters with experimental drug-lipid miscibility tests can be successfully applied to predict lipids with the best solubilizing potential for different API prior to manufacture of solid lipid nanoparticles and nanostructured lipid carriers.

9.
Pharm Dev Technol ; 25(3): 281-289, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31680590

ABSTRACT

The objective of the study was to mask the unpleasant taste of captopril (CPT). Taste masking was achieved by complexation of CPT with a basic ion exchange resin, Dowex® 66, using the batch method. Dowex® 66 was used for the adsorption of CPT, and physical and chemical parameters of the CPT resinates complex were evaluated. A central composite design was used to generate the experiments for the manufacture of resinates using different process and formulation variables. In vitro dissolution studies were performed for 2 h in 0.01N HCl (pH 1.6) using USP Apparatus I. The compatibility of CPT and the resin was evaluated by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). The resinates were evaluated for micromeritic properties and further characterised using FTIR, DSC, and PXRD. Response surface methodology was used to determine the significance of input variables on the CPT content and release. The CPT resin ratio was found to have a significant impact on content of the resinates and on CPT release. The formulations were also studied for taste masking ability by means of an electronic gustatory system - electronic tongue.


Subject(s)
Anion Exchange Resins/chemistry , Captopril/chemistry , Resins, Synthetic/chemistry , Taste , Angiotensin-Converting Enzyme Inhibitors/chemistry , Chemistry, Pharmaceutical/methods , Drug Liberation , Electronic Nose
10.
Pharmaceutics ; 11(3)2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30866418

ABSTRACT

The impact of formulation and process variables on the in-vitro release of prednisone from a multiple-unit pellet system was investigated. Box-Behnken Response Surface Methodology (RSM) was used to generate multivariate experiments. The extrusion-spheronization method was used to produce pellets and dissolution studies were performed using United States Pharmacopoeia (USP) Apparatus 2 as described in USP XXIV. Analysis of dissolution test samples was performed using a reversed-phase high-performance liquid chromatography (RP-HPLC) method. Four formulation and process variables viz., microcrystalline cellulose concentration, sodium starch glycolate concentration, spheronization time and extrusion speed were investigated and drug release, aspect ratio and yield were monitored for the trained artificial neural networks (ANN). To achieve accurate prediction, data generated from experimentation were used to train a multi-layer perceptron (MLP) using back propagation (BP) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 57 training algorithm until a satisfactory value of root mean square error (RMSE) was observed. The study revealed that the in-vitro release profile of prednisone was significantly impacted by microcrystalline cellulose concentration and sodium starch glycolate concentration. Increasing microcrystalline cellulose concentration retarded dissolution rate whereas increasing sodium starch glycolate concentration improved dissolution rate. Spheronization time and extrusion speed had minimal impact on prednisone release but had a significant impact on extrudate and pellet quality. This work demonstrated that RSM can be successfully used concurrently with ANN for dosage form manufacture to permit the exploration of experimental regions that are omitted when using RSM alone.

11.
Talanta ; 83(3): 1037-49, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21147355

ABSTRACT

An accurate, sensitive and specific high performance liquid chromatography-electrochemical detection (HPLC-ECD) method that was developed and validated for captopril (CPT) is presented. Separation was achieved using a Phenomenex(®) Luna 5 µm (C(18)) column and a mobile phase comprised of phosphate buffer (adjusted to pH 3.0): acetonitrile in a ratio of 70:30 (v/v). Detection was accomplished using a full scan multi channel ESA Coulometric detector in the "oxidative-screen" mode with the upstream electrode (E(1)) set at +600 mV and the downstream (analytical) electrode (E(2)) set at +950 mV, while the potential of the guard cell was maintained at +1050 mV. The detector gain was set at 300. Experimental design using central composite design (CCD) was used to facilitate method development. Mobile phase pH, molarity and concentration of acetonitrile (ACN) were considered the critical factors to be studied to establish the retention time of CPT and cyclizine (CYC) that was used as the internal standard. Twenty experiments including centre points were undertaken and a quadratic model was derived for the retention time for CPT using the experimental data. The method was validated for linearity, accuracy, precision, limits of quantitation and detection, as per the ICH guidelines. The system was found to produce sharp and well-resolved peaks for CPT and CYC with retention times of 3.08 and 7.56 min, respectively. Linear regression analysis for the calibration curve showed a good linear relationship with a regression coefficient of 0.978 in the concentration range of 2-70 µg/mL. The linear regression equation was y=0.0131x+0.0275. The limits of detection (LOQ) and quantitation (LOD) were found to be 2.27 and 0.6 µg/mL, respectively. The method was used to analyze CPT in tablets. The wide range for linearity, accuracy, sensitivity, short retention time and composition of the mobile phase indicated that this method is better for the quantification of CPT than the pharmacopoeial methods.


Subject(s)
Antihypertensive Agents/analysis , Captopril/analysis , Chromatography, High Pressure Liquid/methods , Electrochemistry/methods , International Agencies/legislation & jurisprudence , Limit of Detection , Linear Models , Time Factors , United States , United States Food and Drug Administration/legislation & jurisprudence
12.
Drug Dev Ind Pharm ; 36(12): 1497-510, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20528615

ABSTRACT

BACKGROUND: Hydrophilic matrix formulations are important and simple technologies that are used to manufacture sustained release dosage forms. METHOD: Hydroxypropyl methylcellulose-based matrix tablets, with and without additives, were manufactured to investigate the rate of hydration, rate of erosion, and rate and mechanism of drug release. Scanning electron microscopy was used to assess changes in the microstructure of the tablets during drug release testing and whether these changes could be related to the rate of drug release from the formulations. RESULTS: The results revealed that the rate of hydration and erosion was dependent on the polymer combination(s) used, which in turn affected the rate and mechanism of drug release from these formulations. It was also apparent that changes in the microstructure of matrix tablets could be related to the different rates of drug release that were observed from the test formulations. CONCLUSION: The use of scanning electron microscopy provides useful information to further understand drug release mechanisms from matrix tablets.


Subject(s)
Albuterol/chemistry , Lactose/analogs & derivatives , Methylcellulose/analogs & derivatives , Tablets/chemistry , Acrylates/chemistry , Albuterol/administration & dosage , Carboxymethylcellulose Sodium/chemistry , Chemistry, Pharmaceutical , Hardness , Kinetics , Lactose/chemistry , Methylcellulose/chemistry , Microscopy, Electron, Scanning , Solubility
13.
Drug Dev Ind Pharm ; 32(10): 1139-48, 2006.
Article in English | MEDLINE | ID: mdl-17090436

ABSTRACT

Tablets manufactured in-house were compared to a marketed sustained-release product of verapamil to investigate the rate of hydration, erosion, and drug-release mechanism by measuring the wet and subsequent dry weights of the products. Swelling and erosion rates depended on the polymer and granulating fluid used, which ultimately pointed to their permeability characteristics. Erosion rate of the marketed product was highest, which suggests that the gel layer that formed around these tablets was weak as opposed to the robust and resistant layers of test products. Anomalous and near zero-order transport mechanisms were dominant in tests and commercial product, respectively.


Subject(s)
Verapamil/administration & dosage , Calcium Channel Blockers/administration & dosage , Delayed-Action Preparations , Drug Carriers , Drug Compounding , In Vitro Techniques , Polymers , Tablets , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...